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A B S T R A C T

This paper introduces a set of methods for image and video forensic analysis. They were designed to help

to assess image and video credibility and origin and to restore and increase image quality by diminishing

unwanted blur, noise, and other possible artifacts. The motivation came from the best practices used in

the criminal investigation utilizing images and/or videos. The determination of the image source, the

verification of the image content, and image restoration were identified as the most important issues of

which automation can facilitate criminalists work. Novel theoretical results complemented with

existing approaches (LCD re-capture detection and denoising) were implemented in the PIZZARO

software tool, which consists of the image processing functionality as well as of reporting and archiving

functions to ensure the repeatability of image analysis procedures and thus fulfills formal aspects of the

image/video analysis work. Comparison of new proposed methods with the state of the art approaches is

shown. Real use cases are presented, which illustrate the functionality of the developed methods and

demonstrate their applicability in different situations. The use cases as well as the method design were

solved in tight cooperation of scientists from the Institute of Criminalistics, National Drug Headquarters

of the Criminal Police and Investigation Service of the Police of the Czech Republic, and image processing

experts from the Czech Academy of Sciences.
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1. Introduction

In our world, digital images are an extensively used medium of
communication that compactly and efficiently conveys a huge
amount of information about our surrounding. However two
important questions should be considered – how much we can
trust all these photographs which are not necessarily obtained
from a trustworthy source and do we notice everything contained
in images, which are often acquired under non-ideal, inadequate
conditions and thus possibly blurred, noisy, or with other types of
unwanted artifacts.
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Our research addressed two related topics – the quality of
image data with respect to their credibility and origin, and image
restoration aimed at diminishing unwanted blur, noise, and other
possible artifacts. The motivation came from the best practices
used in the criminal investigation utilizing images and/or videos.
The determination of the image source, the verification of the image

content, and possible image restoration were identified as impor-
tant issues, of which automation can notably facilitate criminalist’s
work (see Fig. 1). Situations, when the origin of images (child
pornography) or their authenticity (insurance frauds) is ques-
tioned, occur with increasing frequency nowadays.

Regarding the image source determination, the ability to link
individual pictures to appropriate acquisition devices (camera,
scanner, cell phone, etc.) can help investigators for example to
indicate a particular camera type, or to detect cases, when a digital
photo has been re-captured from an LCD screen. For the particular
camera unit identification and model specification we have applied
approaches based on photo response non uniformity (PRNU) and
JPEG quantization tables, respectively. PRNU is known to be able to
describe pixel sensitivity to light and is present in the sensor
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Fig. 1. An overview of the developed and implemented tools for image forensic

analysis in PIZZARO.
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pattern noise. The detection of LCD screen acquisition is done using
structural and color abnormalities in recaptured images. This task
is challenging due to advances in image capture technologies. It is
possible to re-capture high quality images in such a way they are
hard to be distinguished from the originals by an untrained eye.

Various approaches developed for detection of tampering and
forgery traces in image content range from a simple metadata
analysis to a complex shadow and scene lighting analysis using
mathematical models. The simple metadata analysis often
provides only a weak indicator of forgery and usually is not
applicable in real cases. On the other hand, the manual scene
analysis exploiting knowledge of scene lighting and/or geometry
parameters creates strong forgery indicators but usually requires
complex tuning for every case by professionals with deep expertise
in the field. We have provided a set of methods that can help
investigators in their decision making. These methods belong to
the family of passive (blind) image forensic methods, which does
not require any prior information about images under verification.

Specifically, we focused on methods for detecting double
compression, interpolation, copy–paste action, and noise and
chromatic aberration inconsistencies. Double compression is
introduced to an image while altering the JPEG image in a
photo-editing software, when the image is decompressed and after
the manipulations are carried out the image is re-saved and thus
compressed again. Interpolation, required when the image is
geometrically transformed (i.e., rotation, scaling, skewing), is often
applied on the image to be able to merge two or more images
together to create high quality and consistent image forgeries. In
copy–move forgeries, a part of the image is copied and pasted into
another part of the same image, with the intention to hide an
object or a region of the image. Methods for copy–move forgery
detection search for similar overlapping image blocks, with
possibly blurred borders (to achieve smooth transition between
the original image and pasted blocks). Noise inconsistencies are
often introduced while concealing the tampering traces, when
locally random noise is added to the forged image regions. Finally,
inconsistencies in chromatic aberrations across the image can
indicate an image forgery, too. The chromatic aberrations are
introduced to the image due to inability of a camera lens to focus
all colors to the same convergence point. It is manifested as a
regular pattern of slight blur and/or color shifts. Irregularities in
this pattern could imply image tampering.

Finally, the last part of our work is related to improving image
quality by reducing noise and blur. A paradigm for forensic
specialists examining images and videos from surveillance
cameras is to deal with cases that often exhibit insufficient
resolution and compression artifacts, which prevents correct
identification of subjects, such as human faces or car license plates.
Moreover, omnipresent image noise is a frequent image degrada-
tion, typically visible in images taken in low-light conditions. We
design a methodology for removing noise and compression
artifacts and even increasing data resolution, if applicable (e.g.,
several frames from a video sequence are available).

Proposed work is based on tight cooperation of scientists from the
Institute of Criminalistics, National Drug Headquarters of the
Criminal Police and Investigation Service of the Police of the Czech
Republic, and image processing experts from the Czech Academy of
Sciences. All novel theoretical results together with existing methods
for LCD image re-capture and denoising, were implemented in the
PIZZARO software [1] to provide required tools. In addition to the
image processing functionality, we also paid attention to formal
aspects of the image/video analysis, which play important role in the
forensicpractice. The PIZZAROsoftwareenables tocreate logfiles and
reports to ensure the repeatability of image analysis procedures,
when all taken steps with parameter settings and achieved outputs
are recorded for future use/verification together with the operator
identity and archiving information such as the file paths and dates.

After the review of other existing software solutions in Section 2
we will introduce methods proposed for solving the above mentioned
three issues – source device analysis in Section 3, image content
verification in Section 4, and image restoration in Section 5. Section 6
introduces main features of the resulting software package PIZZARO
(http://pizzaro.utia.cas.cz), implementing proposed algorithms. Il-
lustrative use cases with examples of the PIZZARO application are
described in Section 7 and Section 8 concludes the paper.

2. Existing software solutions

Numerous software packages have been introduced in recent
years for verifying the integrity of digital images. Some of them
utilized sophisticated theoretical and scientific approaches and
some others rather focused on practical and ad-hoc methods. In
general, Forensic Toolkit (FTK) [2] has become the most popular
solution in the digital forensic field and it has been widely used by
digital forensic investigators. Fourandsix [3] has introduced an
image forensic tool providing image authentication functionalities
by using JPEG signatures. This software is mainly oriented on
media publishers and forensic investigators. Verifeyed [4] has
developed software focused on detecting manipulated photos and
PDF files for insurance and corporate security markets. Belkasoft
[5] introduced forensic software that enables to analyze the
validity of digital images by using a set of separate basic image
forensic methods. They also focused on insurance market. Forensic
Pathways [6] has developed and introduced to the market an
image ballistics software that aims to meet main needs of forensic
investigators in the field. Last, but not least, we have to mention the
Image Error Level Analyser [7] which is a free and easily accessible
image forensic tool that has become very popular among the
community despite its limitations and high false positive rates.

Also the area of image and video restoration and enhancement
is experiencing a lot of new software packages. For example, we
can mention Amped Five [8] (started as MIPE [9]), that developed
an image and video enhancement (super-resolution) software. This
software also provides image forensic and ballistics tools targeting
the digital forensic experts. Another tool that can be mentioned is
MotionDSP [10] that provides real-time super-resolution and
video enhancement techniques. They also deliver GPU accelerated
versions of their software. Cognitech [11] provides methods
enhancing quality and resolution of (mainly facial) videos for the
forensic market. Another software package providing super
resolution, denoising, and deblurring has been developed by
RTCVision [12]. Impress [13] is another company providing video
enhancing tools accelerated by utilizing GPUs. The authors of the
webpage [14] provide several alternative SR toolboxes.

Despite the fact that there are numerous image and video
forensic and enhancement software packages available on market,
we can note that none of them provides complete solution.

http://pizzaro.utia.cas.cz


Fig. 2. Correlation values for images taken by the reference camera but with an

increasing zoom; the Gsensor was created from images taken with the zoom 50. Top:

using the full-size image approach; bottom: using the central part approach.

Fig. 3. Histogram of the correlation values from the false positive rate testing

(10 different cameras). Top: using the full-size image approach; bottom: using the

central part approach.

J. Kamenicky et al. / Forensic Science International 264 (2016) 153–166 155
Inspecting and enhancing digital images and videos is complex
process and often a combination of different methods and
solutions is needed to derive meaningful and desired output.

3. Image source determination

Methods assigning a digital image to the source camera are
typically based on the fact that image sensors suffer from several
fundamental and technology related imperfections resulting in
their performance limitations and noise. For example, if we take a
picture of an absolutely evenly lit scene, the resulting digital image
usually still exhibits small changes in intensity among individual
pixels which is partly because of pattern noise, readout noise or
shot noise. While readout noise or shot noise are random
components, the pattern noise is deterministic and remain
approximately the same if multiple pictures of the same scene
are taken. As a result, pattern noise can be used as the sensor
fingerprint of cameras.

Alternatively, if the digital image is the result of LCD
recapturing (i.e., a photo displayed on an LCD is recaptured by
camera), often we can observe periodic detectable artifacts in the
recaptured photo. The last method for analysis of the image
acquisition device is based on the evaluation of the camera and
image attributes related to their resolution and the way how they
were preprocessed.

3.1. Assignment to the source device

It has been shown that photo response non uniformity (PRNU,
describing the pixel sensitivity to light) has a dominant presence in
the sensor pattern noise [15,16] and can be utilized as the sensor
fingerprint because of its stability and discrimination power. Most
of the state-of-the-art source identification methods are based on
the method proposed by Jessica Fridrich et al. (e.g., [15,17]). Here,
the image acquisition process is modeled in the following way:

g ¼ u þ u�G þ Y; (1)

where g denotes the image produced by the camera, u denotes the
noise-free image (the perfect image of the scene), G denotes the
PRNU noise and U stands for all other additive or negligible noise
components. We have proposed a modification of the standard
approach, addressing the problems with the time demanding
PRNU estimation and with the situation when the images are taken
with various zoom.

For a given camera, PRNU noise can be estimated by averaging
multiple images gi, i = 1, . . ., N captured by this camera. Prior to
averaging, the scene content is suppressed from the image. This
preprocessing reduces the required number of images that is
needed to achieve a robust PRNU estimation. The suppression is
realized by application of a denoising filter F and averaging the
noise residuals instead. We will denote these residuals by bgi (i.e.,bgi ¼ gi�FðgiÞ). Hence, the deterministic components of the camera
sensor noise are computed in the following way:

Gsensor ¼
1

N

XN

i¼1

bgi ¼
1

N

XN

i¼1

ðgi�FðgiÞÞ: (2)

Alternatively, maximum likelihood estimation (MLE) instead of
simple averaging is often employed.

To reduce the false positive rate, sensor fingerprints are
enhanced by Wiener filtering in the frequency domain (e.g., to
reduce JPEG compression artifacts) as well as by using a linear
pattern removal process through zero-mean operation (e.g., to
remove traces of color filter array – CFA – interpolation) [16]. To
summarize, Gsensor is denoted as the basic version of the sensor
fingerprint of the camera.
The assignment test of a digital image to the possible source
camera has been carried out by evaluating the similarity measure
of two sensor fingerprints. One is obtained from the image under
investigation and second from the set of camera reference images.
Having available two different sensor fingerprints Gs1

and Gs2
, we

can measure their similarity by employing a normalized correla-
tion:

corrðGs1
; Gs2
Þ ¼ hðGs1

�Gs1
Þ; ðGs2

�Gs2
Þi

kGs1
�Gs1

kkGs2
�Gs2

k
; (3)

where X denotes mean of the vector X, h i denotes inner product
and k�k denotes L2 norm. If the calculated correlation is above a
certain threshold, we accept the hypothesis that the tested image
has been acquired by the camera.

The implemented method differs from the one described in
[15,18]. It only uses the central portions of images which leads to
more robust results when images are strongly impacted by
vignetting. The vignetting is typically more profound at non-
central image parts thus filtering out outer parts of images
increases the probability of achieving higher true positive (TP) rate.

In Fig. 2 we demonstrate on 43 images taken with different
optical zoom how the correlation values increase if the central parts
(bottom graph) are used instead of the full-size images (upper
graph). The two histograms in Fig. 3 show that the correlations of the
reference fingerprint with non-corresponding cameras are below
the values with the corresponding camera even when the central
part approach was applied, so the cropping does not cause increase
in the number of false positives. The minimum correlation of the



J. Kamenicky et al. / Forensic Science International 264 (2016) 153–166156
true test (Fig. 2 bottom) is more then 2 times higher then the
maximum of false test in Fig. 3 bottom. Moreover, the central
portion approach significantly reduce the computational time.

To increase the robustness of the correct identification we
recommend to create several Gsensor with different zoom. It
eliminates the need for the central part. Our software includes this
feature that multiple Gsensor can be associated with a single camera.

3.2. LCD image re-capture

In order to be able to identify images which were created by re-
capturing a photograph from a LCD screen, we have implemented
three types of features which are able to reflect the abnormalities
of recaptured image [19]. They are used together with a pre-
trained support vector machine (SVM) classifier. Design of the
feature set is focused on detection of certain image aberrations
occurring during the re-capture process.

On LCD-originating images periodic texture pattern can be
often observed. This is due to the aggregation of regular structures
of LCD. Even though this pattern can be partially avoided by
marginal image blurring or by higher quality data acquisition,
related loss of fine details is inevitable and we exploit this fact in
the first two types of features. The third type of features is based on
color characteristic. The color space of the resulting recaptured
image is usually less saturated comparing to the original due to the
generally smaller color gamut of LCD screens than a typical camera.

The set of implemented features consists of:

� LBP features – 80 features are evaluated using the local
binary patterns (LBP) operator LBPriu2

P;R with P = {8, 16, 24, 24}
and R = {1, 2, 3, 4}, respectively [20]. It is defined by means of a
set of P neighbor pixels for the given pixel, equally distributed
on a circle of radius R (see Fig. 4). To achieve gray scale and
contrast invariance the operator is defined as

LBPP;R ¼
XP�1

p¼0

HðgðpÞ�gðcÞÞ2p; (4)

where g(c) is the intensity of the central pixel, g(p) is the intensity

of the pth neighbor and H(�) is Heaviside step function. Note, that

by using 2p binomial factor, each spatial structure is assigned

unique LBPP,R number. To achieve rotation invariance:

LBPriu2
P;R ¼

XP�1

p¼0

HðgðpÞ�gðcÞÞ UP;R�2

P þ 1 otherwise;

8><>: (5)

where UP,R is the uniformity operator, which corresponds to

number of LBPP,R spatial transitions UP;R ¼ jHðgðP�1Þ�gðcÞÞ�
Hðgð0Þ�gðcÞÞj þ

PP�1
p¼1jHðgðpÞ�gðcÞÞ�Hðgðp�1Þ�gðcÞÞj.

In this way, only the most uniform neighbor sets are taken
into consideration.
Fig. 4. Circularly symmetric neighbor sets 
� Multi-scale wavelet statistics – the first two geometric moments
(the mean and the variance) of all the high-pass bands from the
Haar wavelet decomposition up to the level 3, computed
separately for R, G, and B channels – 54 features in total.
� Color features – Average pixel value of each color channel; RG, RB,

and BG correlations between color channels; center of mass of
histogram h(i) of each color channel, where h(i) is the number of
pixels with intensities i � 1 or i + 1; RGB pairs energy ratios
E1 = |G|2/|B|2, E2 = |G|2/|R|2, E3 = |B|2/|R|2 [21]; mean, standard
deviation and skewness, computed for the H, S, and V color
channels, respectively [22].

The implemented SVM classifier is trained using the described
features on a set of original images with their recaptured
counterparts and then used for verification. We have used a
database of 12,000 images, half of which were recaptured from
numerous LCD/camera combinations. 2000 images were manually
recaptured from our original photographs, whereas the rest were
general images taken from Internet sources.

The recommended usage of the proposed approach starts with
the classifier training using the samples from camera/LCD set in
question. As is apparent from practice the information about the
camera and LCD devices (e.g., devices owned by forgery suspect) is
often available during the investigation.

3.3. Quantization tables

The last method aims to identify the set of camera models
possibly used for the acquisition of the analyzed image. The
proposed method is based on extraction of a certain set of features
from the digital image file and matching them to a set of camera
models. For instance, having a digital image of resolution of
1000 � 800 pixels and a claim that the digital image has been
captured by a particular camera model (camera model name is
stored in digital image metadata) and not been modified since, we
can check if that particular camera device can produce digital
images with such resolution. If we know that the camera produces
only digital images with resolutions 2592 � 1944, 1600 � 1200,
and 640 � 480, we obviously can draw a conclusion that the above
claim is false and the digital image was not produced by this
camera. Otherwise, the tested model can be a potential source of
the image.

The above example illustrates how the image resolution can be
employed as a feature. Numerous similar features can be used for
the image-camera matching process [23]. More formally, we say
that a digital image has attributes, and the image metadata are
their respective values, which characterize the digital image.
Essentially, some attribute values are dependent on the camera
with which the digital image has been taken. We refer to such
camera associated features stored in the digital image as camera
fingerprints. The properties that can explicitly characterize an
acquisition device (camera) include, e.g., its producer and model,
for LBPriu2
8;1 , LBPriu2

16;2, LBPriu2
24;3 and LBPriu2

24;4.



Fig. 5. The top image shows spectrum of a single JPEG image. In the bottom there is

shown the spectrum of a double JPEG image.
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the output file format, imaging sensor properties, the digital zoom
interpolation method, the color filter array interpolation method
used to encode an image, etc. Some of these properties identify a
camera uniquely, and some of them can be considered as camera
model fingerprints. In the provided method, quantization tables
(QTs), which encode digital images to JPEG format are used to
match photos to their potential source camera models.

We assume a fixed tuple of properties sufficient for unique
identification of any camera. We denote such a tuple by ~cm, a
camera ID vector. Next, we assume a tuple of camera attributes,
whose values pose suitable fingerprints of available cameras in our
database. We denote such a tuple of fingerprints by~u, a fingerprint
vector.

Specifically, given a ‘‘testing’’ tuple ð ~cm0 ;
~uÞ, our default position

is that~u cannot be a real fingerprint vector of ~cm0. Accordingly, we
set out the following null hypothesis:

H0 : ‘‘~u cannot be a fingerprint of ~cm0’’: (6)

To accept or reject this hypothesis, we downloaded over one
million digital images from a typical photo sharing site and
extracted a reference fingerprint data set. To discard non-original
(i.e., manipulated) images and create a reliable reference data set,
photos containing obvious traces of modifications were eliminat-
ed. To further eliminate non-original images, only those that form
sufficiently big clusters of images with the same paired producer
model and their QTs are retained and employed to accept or reject
the null hypothesis – to identify a set of potential source camera
models for given tested image. The classification is based on the
luminance QTs only and a threshold-based test replaced originally
used statistical testing.

4. Image content verification

Digital forensic methods for detection of forgery traces can be
classified into two main categories – data hiding approaches and
methods working with digital signatures. By data hiding we refer to
methods embedding secondary data into the image such as digital
watermarking approaches do [24]. Digital watermarking assumes
an inserting of a digital watermark at the source side (e.g., camera)
and verifying the mark integrity at the detection side. Watermarks
are mostly inseparable from the digital image they are embedded in
and they undergo the same transformations as the image itself. The
latter is their main advantage – it is difficult to overcome them – but
at the same time their disadvantage – they have to be designed
robustly not to be degraded by expected user operations.

Methods using the digital signatures are based on extracting
unique features from the image at the source side and encoding
these features into the so-called digital signature. These signatures
are then used to verify the image integrity. This research direction
is popular thus numerous approaches based on one way hashing
and digital signature methods have been introduced so far such as
SHA, MD5, etc. [25].

Although in the past researchers preferred data hiding and digital
watermarking algorithms, recently new passive approach which
does not embed any secondary data into the image has become more
popular. The passive (also called blind) methods in contrast to the
active ones do not use any prior information about the analyzed
image. Numerous algorithms have been proposed in this area, trying
to detect image merging [26], traces of non-consistencies in color
filter array interpolation [27], traces of geometric transformations,
[28], cloning [29], traces of uses of computer graphics [30], JPEG
compression inconsistencies [31], etc. All these methods are
typically using the fact that digital image editing introduces specific
detectable statistical changes into the analyzed image.

The proposed algorithms aim at the minimization of necessary
computational power and human intervention. They apply passive
approach and are based on detection of traces of double
compression and interpolation, and inconsistencies in chromatic
aberrations and in omnipresent noise. We have included as well
our method for detection of copy–paste forgeries, when some parts
of an image are copied and pasted to other image parts to
intentionally hide original image content.

4.1. Detecting double compression

When an image is intentionally altered, it is typically loaded
into a photo-editing software and after manipulations are carried
out the image is once again re-saved. If the original image was
already compressed, during the loading procedure the data are
uncompressed and at the re-saving step they are compressed
again, potentially with other parameter setting of the compression
procedure.

For JPEG compression method this double action can be
analyzed and used as an indication of an image alternation, since
this re-saving introduces specific changes into the altered image
due to the difference of used quantizations matrices of unaltered
(primary) and modified (secondary) images.

To understand the core of the proposed algorithm we need to
show basics of the JPEG algorithm [32]. The image to be
compressed is converted from RGB to YCbCr color channels (Y –
luminance, Cb and Cr – chrominance components). Each channel is
then split into adjacent blocks of 8 � 8 pixels, transformed by
discrete cosine transform (DCT), and quantized. At the end all
quantized coefficients are compressed by some variant of Huffman
entropy encoding.

The key step is the quantization. Here the 8 � 8 quantization
matrix Qðu; vÞ, which defines the quantization steps for each used
DCT frequency, is applied in lossy manner. The quantized DCT
coefficients FQ ðu; vÞ are defined as:

FQ ðu; vÞ ¼ round
Fðu; vÞ
Qðu; vÞ

� �
; u; v 2 f0; . . .; 7g; (7)

where Fðu; vÞ are computed DCT coefficients from particular block
of individual color channels.

During the double JPEG action the compressions were realized
with different quantization matrices Qa (primary) and Qb (second-
ary). The DCT quantized coefficient is said to be double quantized if
Qaðu; vÞ 6¼ Qbðu; vÞ. The double quantization is given by:

FQb

ðu; vÞ ¼ round
FQa

ðu; vÞQaðu; vÞ
Qbðu; vÞ

  !
: (8)

To determine the presence of double compression artifacts, the
method uses a threshold-based quantitative measure. Histograms



Fig. 6. Detection of interpolation: top-left: the original image stored in the TIFF

format; top-right: the image with a re-sized area, denoted by a red box; bottom-

left: the result of the method applied on the original image; bottom-right: the result

of method applied on the modified image, with a distinctive peak.
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of DCT coefficients are analyzed in the frequency spectrum (FFT). If
their spectral representation exhibits characteristics peak, the
image is classified as possibly double JPEG compressed image. The
bottom image in Fig 5 demonstrates a typical FFT spectrum of
double JPEG images. The image on the top is the spectrum of a
single JPEG compressed image. Fig. 15(c) shows an application of
the method.

Patterns introduced by double JPEG compression depend on
particular compression quality parameters [33]. Proposed method
extends the approach introduced in [33], by also allowing to detect
double compression locally and thus detecting if two or more
images were spliced together. The analyzed image is divided into
patches and characteristic peaks are detected patch-wise. The
sensitivity to the peak height is adjustable. By varying the
sensitivity we can analyze the image and determine if double
compression appears non-homogeneously.

It is important to note that detecting the traces of double
compression does not necessarily imply the existence of malicious
modifications in the image. Often images are re-compressed to
achieve smaller size or only simple image adjustment operations
such as contrast enhancing were applied. Nonetheless, detecting
these changes plays a valuable role in identifying image forgeries.

4.2. Detection of interpolation

When two or more images are spliced together often geometric
transformations such as scaling, rotation or skewing of these
images are needed in order to create high quality and consistent
forgeries. Geometric transformations typically require resampling
and interpolation steps. Therefore by having proposed detectors
for resampling/interpolation detectors altered images containing
tampered portions can be easily identified.

There are two principal steps in geometric transformations. In
the first step a spatial rearrangement of pixels of the image is done
according to an appropriate transformation function, T, which
maps the coordinates of the input image pixels to points in the
output image:

x0 ¼ Txðx; yÞ; y0 ¼ Tyðx; yÞ: (9)

The second step of the geometric transformation deals with an
interpolation – resulting intensity values for individual pixel
positions in the transformed image are assigned by means of a
constructed low-pass interpolation filter w and rearranged pixels
from the input image. Here, to compute signal values at arbitrary
locations, discrete samples of the fk are multiplied with proper
filter weights when convolving them with w. We denote the result
of interpolation operation by f wðxÞ, respectively by Dnff wgðxÞ
which would denote nth derivative of f(x).

By assuming that W is an integer, it can be shown that

varfDnff wgðxÞg ¼ varfDnff wgðx þ #DxÞg; # 2 Z: (10)

In other words it can be shown that interpolation brings into the
signal and their derivatives a specific periodicity [28]. This
periodicity is dependent on the applied interpolation kernel and
can be used for detecting the traces of an interpolation. To this end,
a derivative filter is applied to the investigated region, b(x, y),
Dn{b(x, y)} and a Radon transformation is employed in order to find
traces of an affine transformation. The Radon transformation
computes projections of magnitudes of Dn{b(x, y)} along specified
directions determined by angle u (the projection is a line integral in
the given direction), resulting in 180 vectors ru. If the investigated
region has been resampled, corresponding auto-covariance
sequences defined as Rru

ðkÞ ¼
P

iðruði þ kÞ�ruÞðruðiÞ�ruÞ will
contain a specific strong periodicity (see Fig. 6 bottom-right). In
contrast to [28], only the detection of scale and rotation is
supported and results are visualized to the forensic investigator in
a single plot so he/she has a full control on decision making.

4.3. Detection of copy–move

One of common types of digital image forgeries is a copy–move
forgery [29]. Here, a part of the image is copied, often blurred on its
border and pasted into another part of the same image, with the
intention to hide an object or a region of the image. Typically, ideal
regions for using copy–move forgery are textured areas with
irregular patterns, such as grass. Because the copied areas will
likely blend with the background it is very difficult for the human
eye to detect any suspicious artifacts. Another fact which
complicates the detection of this type of tampering is that the
copied regions come from the same image, therefore they have
similar properties, such as the noise component or color palette. It
makes the use of statistical measures to find irregularities in
different parts of the image impossible.

Existing copy–move forgery detection methods are mostly
based on matching of overlapping image blocks. For example,
Fridrich et al. [34] have proposed a method which is based on
matching the quantized lexicographically sorted discrete cosine
transform (DCT) coefficients of overlapping image blocks. The
lexicographical sorting of DCT coefficients is carried out mainly to
reduce the computational complexity of the matching step.

The proposed method begins with tiling the image by blocks of
R � R pixels. Blocks are assumed to be smaller than the size of the
duplicated regions, which have to be detected. Blocks are
horizontally slid by one pixel rightwards starting with the upper



Fig. 7. Detection of copy–move: Top: the original photo; middle: the tampered

image with pasted areas; bottom: the method output based on blur moment

invariants showing detected duplicated areas.
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left corner and ending with the bottom right corner. The next step
is about the representation of overlapping blocks with a set of
features. The method enables to choose between two different
kinds of representation of blocks – either a DCT-based representa-
tion of blocks or our representation based on blur moment
invariants. The DCT representation of blocks is faster and has a
lighter requirement on RAM in comparison to moment invariants,
while the blur invariants based method has an advantage in its
robustness in scenarios where the copied areas have been
intentionally blurred. They are functions of central moments
[35,36]. Here, the two-dimensional (p + q)th order central moment
mpq of f(x, y) is defined as

varfDnff wgðxÞg ¼ varfDnff wgðx þ #DxÞg; # 2 Z; (11)

mpq ¼
Z 1
�1

Z 1
�1
ðx�xtÞpðy�ytÞ

qf ðx; yÞdxdy; (12)

where the coordinates (xt, yt) given by the relations xt = m10/m00,
yt = m01/m00 denote the centroid or the center of gravity of f(x, y).
Blur invariants are then defined using the recursive relation:

Bðp; qÞ ¼ mpq�a�mpq�
1

m00

XK

n¼0

Xm2

i¼m1

p
t�2i

� �
q
2i

� �
�Bðp�t

þ 2i; q�2iÞmt�2i;2i; (13)

where

K ¼ ½ðp þ q�4Þ=2�; t ¼ 2ðK�n þ 1Þ;
m1 ¼ maxð0; ½ðt�p þ 1Þ=2�Þ;
m2 ¼ minðt=2; ½q=2�Þ;
a ¼ 1 , p ^ q are even; a ¼ 0 , p _ q are odd:

The proposed algorithm uses 24 blur invariants up to the seventh
order to create the feature vector B = {B1, B2, B3, . . ., B23, B24} of each
block. Using the principal component transformation (preserving
the Euclidean distance among blocks) we reduce this dimension.

After the representation of blocks by either DCT or moment
invariants, similar blocks are identified. The main assumption here
is that a duplicated region consists of many neighboring duplicated
blocks. If we find two similar blocks in the analyzed space and if
their neighborhoods are also similar to each other, there is high
probability that they are duplicated and thus they will be labeled.
The output of the algorithm is a map with the same size as the
input image (see Fig. 7 bottom), with values either zero (the block
at this position is not duplicated) or one (the block at this position
is duplicated). The implemented method is based on the optimized
analysis of block similarity introduced in [29] resulting in
comparable results but faster response.

4.4. Detection of noise inconsistency

Commonly used tool to conceal traces of tampering is the
addition of locally random noise to the forged image regions
[37]. The amount of noise in an authentic image is usually uniform
across the entire image. Adding locally random noise may cause
inconsistencies in the image’s noise. Therefore, detection of
variations of noise levels in an image may signify tampering. Our
method is capable of dividing (segmenting) an investigated image
into segments with different estimated noise levels. It is based on
wavelet analysis followed by tiling high-frequency sub-band into
non-overlapping blocks for which noise variation is individually
estimated. In the first step a one-level wavelet decomposition [38]
of the investigated image is carried out. The high frequency sub-
band, HH1, gives diagonal details of the image at the highest
resolution. Our method tiles this sub-band by non-overlapping
blocks Bi of R � R pixels. Blocks are assumed to be much smaller
than the size of the corrupted regions to be detected. The size of
blocks can be interactively adjusted. For each block we estimate the
standard deviation of the noise. It has been shown [39] that it can be
robustly estimated from HH1 using the median based estimator

bs ¼ medianðjHH1jÞ=0:6745:

The median measurement is insensitive to isolated outliers of
potentially high amplitudes. Often median(|HH1|) is denoted as
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MAD(HH1) where MAD stands for median absolute deviation. This
estimator is very popular and generally provides robust and
precise outcomes. Estimated noise levels are visualized (see Fig. 14
right column) in gray level map for identification of potentially
tampered areas. The method can be extended by clustering of
blocks with similar estimated noise levels [37].

It has to be noted that the noise degradation is the main cause of
failure of most existing blind forgery detection methods. These
methods are able to work correctly only when the amount of
present noise is small. For example, in copy–move forgery additive
noise causes mismatches of duplicated regions. This significantly
decreases the performance of copy–move forgery detection
methods. The same effect can be observed in the methods based
on the detection of resampling. Here the noise degradation causes
the loss of detectable interpolation based correlation among
neighboring pixels.

4.5. Chromatic aberration inconsistency

Camera optical system introduces several kinds of aberration
(imperfections) into the image. One of them, chromatic aberration,
is caused by failure of a lens to focus all colors to the same
convergence point, because lenses have different refractive indices
for different wavelengths of light. Although many modern cameras
attempt to reduce the effect of chromatic aberration, it is still often
manifested as a regular pattern of slight blur and/or color shifts.
Deviations from this regularity in a digital photograph can be seen
as an indication of tampering.

There are two types of chromatic aberration: longitudinal and
lateral. Longitudinal aberration occurs because different wave-
lengths have different focal planes, therefore all colors cannot be
focused (sharp) at once. Lateral aberration occurs because different
wavelengths from the same scene point reach the sensor at
different positions, therefore different color channels are shifted
with respect to each other. The proposed method is based purely
on lateral aberration.

It can be derived (e.g., [40]) that the relation between image
points of two different color channels (e.g., red channel xr and
green channel xg) corresponding to the same scene point is a
simple affine transform with respect to the optical center x0 and
some isotropic scale a

xr ¼ aðxg�x0Þ þ x0: (14)

The general principle of forgery detection using chromatic
aberration is based on the estimation of the unknown parameters
{x0, a}. They are estimated both globally, using the entire image,
and locally, using only a small patch of the image. If the two
estimates are not sufficiently similar, the patch is marked as
possibly having been tampered with.

Authors of [40] used mutual information as the similarity
measure between color channels and found the transform
parameters {x0, a} using an exhaustive search. Every iteration of
such search requires interpolating the entire image and the whole
procedure is therefore extremely slow. Motivated by our target
application, we propose a method which is much faster and more
practical.

Because shifts due to aberrations are small (a in (14) is very
close to 1), the affine transform can be locally approximated by
constant shift. We therefore set up a grid of regularly spaced
positions throughout the entire image and estimate two sets of the
shifts – red to green channel and blue to green channel – in these
positions. If the estimated shifts locally deviate from the pattern
suggested by Eq. (14), it may be a sign of tampering in this particular
area of the image. We only display the estimated pattern of shifts in
the form of arrows (see Fig. 15(d)). The final decision whether or not
the pattern is sufficiently regular is left to the operator.
The key step of the proposed method is estimation of the shift
between two color channels for a small patch around center (grid)
pixel. Because the effect of chromatic aberration is relatively small,
we must find the shift with high subpixel precision. Naive direct
approach would require first upsampling the patch N times to
reach 1/N pixel precision and then performing the registration,
which is computationally quite demanding task. The suitable patch
sizes depend on a image size, for common 10 megapixel image, our
default patch size is 125 � 125 px, resulting in 29 � 21 patches.
Processing such image with 1/100 subpixel precision would then
require performing two interpolations and the registration of
12,500 � 12,500 pixels image (156 megapixel) 609 times for just
one of two combinations of color channels, which is computation-
ally prohibitive.

To achieve better performance, we propose modification to the
brute force method of [40]. First, we replace mutual information
with direct correlation as the similarity measure for registration.
Second, we calculate the correlation in the Fourier domain and use
the two-step discrete Fourier method (DFT) method described in
[41], in which the required upsampling can be done by virtually
zero-padding the Fourier transforms of the two patches. The
respective shift between two color channels is then estimated by
the following procedure:

1. Calculate Fourier transforms of both color channels in the
examined patch.

2. Perform correlation in the Fourier domain by pixel-wise
multiplication.

3. Perform inverse Fourier transform taking into account the fact
that the Fourier transform has been virtually zero-padded to N

times their original size, where 1/N is the required subpixel
precision.

4. Find coordinates of maximum, which is the sought shift (when
divided by N).

For the inverse Fourier transform in the step 3 we do not use
FFT, which would require physically zero-padding the patches, but
rather express the 2D Fourier transform as a matrix multiplication
of the patch in the form

p ¼ RPC; (15)

where p and P are the image patch (one of the color channels) and
its Fourier transform, respectively, and R and C are the row and
column inverse of the 2D DFT matrix. In the formation of the R and
C matrices we take into account the fact that, firstly, we need the
inverse FT only in the limited number of coordinates, expecting the
inter-channel shift close to zero, and, secondly, that the FTs of the
patches have been zero-padded so we include only non-zero input
in the calculation.

Using the described procedure, the shift can be accurately
estimated in a fraction of time (and memory) required for the naive
approach. To further speed-up the process, we first estimate the
shift with 1/4 pixel precision and only in its neighborhood do we
refine the estimate to the full 1/100 precision.

5. Image and video restoration

The main goal of image and video restoration in forensic
analysis is to increase the perceivable image content to the end
user. This is a frequent situation since videos from surveillance
cameras often do not have sufficient resolution and sharpness and
are often blurred and noisy. The restoration module is a powerful
tool that addresses these issues. It is capable of removing noise and
compression artifacts, and if multiple images of the same object
(e.g., several frames from a video sequence) are available it also
increases spatial resolution. The module consists of three



Fig. 8. Denoising: Top: the original image taken in poor lighting conditions causing

profound noise; bottom: the output of the proposed restoration.
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algorithms that can be run independently or applied sequentially
to corrupted input data. Below we describe each method and
provide insights into the applied mathematical tools.

5.1. Denoising

Denoising is the most common image and video restoration
task. In video surveillance two sources of noise impair the quality
of acquired images. We refer to them as external and internal. Two
examples of the external source are fog and haze. Various methods
were proposed to remove such degradation, recently e.g., [42], but
they are not considered here. Instead we focus on the internal
source which is intrinsic to any acquisition device. The internal
noise is a mixture of Gaussian and Poissonian noises, we
approximate the noise for the image processing purposes by the
additive Gaussian noise. We write this symbolically

g ¼ u þ n; (16)

where u is the original image, g the observed noisy image and n the
Gaussian noise with normal distribution N(0, s2).

Our choice of denoising method was influenced by the generally
valid trade-off between the quality of restoration and the time
needed for computation. One group of the best performing fast
methods is based on thresholding of wavelet coefficients [43]. In
the implemented application we exploited special properties of the
dual-tree complex wavelets DT-CWT described in [44]. This type of
wavelets has more isotropic behavior than standard wavelets that
emphasize vertical and horizontal edges, and weaken diagonal
edges. While slightly more time-consuming than standard
orthogonal wavelets, the time of computation is still linear in
the number of pixels.

Formally, the estimated image equals

u
˜
¼ W�1arg min

v

1

2s2
kg�W�1vk2 þ akvk1; (17)

where W is the wavelet transform, W�1 its inverse, v the wavelet
coefficients of the solution, s2 noise variance and a > 0 a
parameter controlling the level of smoothness. Thanks to the
special property of complex wavelets being the Parseval frame, the
solution can be computed in linear time with respect to the
number of pixels by soft thresholding

SaðaÞ ¼
a�a a > a
0 aj j�a
a þ a a < �a;

8<: (18)

applied on individual coefficients of the wavelet transform, i.e.,
u
˜
¼ W�1Sas2ðWgÞ.

To achieve the optimal smoothness, the estimated noise
variance s2 can be adjusted by user. Fig. 8 demonstrates our
result for a very noisy input.

5.2. Super-resolution

Super-resolution (SR) algorithm fuses multiple input low-
resolution images (video frames) and estimates the latent high-
resolution image (frame). We model the acquisition process and
then apply an inverse method to recover the latent image as we
proposed originally in [45]. The nature of degradation in the
acquisition process implies that this is an ill-posed problem and we
need additional regularization. Appropriate numerical methods,
such as [46], are necessary to solve non-linear equations, which are
the outcome of the regularized functional.

The acquisition process models the observed low-resolution
image gk as the downsampled (D) and warped (Tk) high-resolution
image u

gk ¼ DTku þ n; (19)

where n is additive noise. The downsampling operator D mimics
the sampling phenomenon taking place in the camera sensor by
performing convolution with a sensor blur and subsampling the
data. The operator D is the same for all the observed images gk’s and
is fully determined by user parameters, which are the sensor blur
size and subsampling factor. In our case, we use gaussian blur as
the sensor blur as proposed in [47]. The subsampling factor is
equivalent to the SR factor and specifies by what ratio we want to
increase the resolution of input images. The warping operator Tk

geometrically transforms u to be aligned with gk. The acquisition
model assumes that all the observed images gk’s differ only by the
geometric transformations Tk’s, which are however unknown.

The critical step in the SR algorithm is to correctly estimate Tk’s.
Typically we choose one input image gr as a reference image, the
corresponding Tr is identity and all other Tk’s are calculated
towards the reference image. For this purpose we use an optical
flow (OF) algorithm, which estimates local shifts (motion field)
between two images with sub-pixel accuracy. The estimated
motion field then fully defines the warping matrix Tk. There is a
vast number of OF algorithms and several benchmarks that
compare their performance [48]. For our purpose we have chosen a
method in [49], which has the best ratio of precision to time
complexity, and included modifications suggested in [50]. The
implementation of the OF algorithm is pyramidal, i.e., calculating
shifts on multiple scales, which allows accurate estimation of large
and small shifts simultaneously. Smoothness of the estimated
motion field is forced by the Total Variation (TV) regularization. If
the input images contain artifacts, such as noise or compression
artifacts, the motion field often contains outliers negatively
influencing the SR step. We have improved the OF algorithm by
adding an optional constraint for parametric motion field models.
The user can choose between two parametric models: translation
and affine. The translation model constrains the estimated motion
field to give one global translation vector. Such scenario is typically



Fig. 9. Super-resolution: (a) sequence of photos captured by a DSLR camera; (b)

camera default demosaicing JPEG output of one photo; (c) super-resolution

reconstruction from demosaicing JPEG images; (d) super-resolution reconstruction

directly from RAW images.
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useful when we are interested in SR of a relatively small region
where the geometric transformation among images is well
approximated by translation, e.g., a license plate of a moving
car. The affine model constrains the field to be represented by a six-
parameter linear transform, which is the most general 2D linear
transform. Note that this allows for rotation and scale changes in
the input images.

Once the warping operators Tk’s are estimated, we proceed to
solve (19). Following the Bayesian paradigm, the optimal solution
is the maximum a posteriori (MAP) estimator. Let the noise n be
normally distributed and the image prior be a sparsifying
distribution expf�lkCukp

pg, where p � 1 and C is a filtering
operator returning features that are assumed to be sparse. A
common example of C is image gradient. The MAP estimator is then
the minimum of the energy function

EðuÞ ¼ 1

2

X
k

kDTku�gkk
2 þ lkCukp

p: (20)

The first term of E is called a data term and the second one is
regularization. Due to the sparsity measure kCukp

p, derivatives of E

are non-linear and we thus apply a linearization method referred
to as the half-quadratic algorithm [51]. The problematic term
kCukp

p is replaced with a quadratic form hu, Lui, where L must be
iteratively updated with previously calculated Cu. The action of L

can be interpreted as space-variant convolution with a Laplacian-
like filter, of which coefficients spatially vary base on Cu. In
addition, the action of DTk is also space-variant convolution with a
filter (sensor blur) which is shifted by sub-pixel vectors in Tk. In the
half-quadratic algorithm we thus iteratively solve for u a linear
system

X
k

T�k D�DTk þ lL

  !
u ¼

X
k

T�k D�gk; (21)

for which we use a Conjugate Gradient (CG) method. A fast
implementation using FFT is not possible in this case sinceP

kT�k D�DTk þ lL is space-variant convolution. However CG

methods are relatively efficient as they typically require a small
number of iterations (around 10) for this type of problems.

In Fig. 9 we compare default camera demosaicing with standard
SR reconstruction of JPEG images and our SR reconstruction of
RAW images. The demosaicing algorithm applies on a single image
whereas the SR algorithms take multiple images, therefore SR is
expected to provide better results as more information are at
disposal to process. The results are cropped to better see and
compare the reconstruction quality of the car license place. The
camera demosaicing output in (b) was spatially interpolated by a
factor of 2 to obtain the resolution of SR outputs. The demosaicing
images are typically used in practice, since they are the default
output of any digital camera. The demosaicing process removes
color filter array (also called Bayer filter mosaic) and also performs
other tasks, such as denoising and color correction, which alters
the images in a way not suitable for SR. If we apply standard SR
algorithms on such images, we obtain a suboptimal result in (c). In
this case the SR factor was 2. However, our SR algorithm is adapted
to use directly RAW images and work with Bayer mosaic, which
outperforms standard SR as can be seen in (d). The resolution of
RAW images is half the resolution of demosaicing images and
therefore the SR factor in the second case (d) is 4 to obtain the same
resolution as in the first case (c). The license plate is difficult to read
after demosaicing and even after applying SR on these images. Our
SR on RAW images shows dramatic improvement with all the
letters and numbers clearly legible.
5.3. JPEG artifact removal

Original JPEG standard [52] is based on compression of cosine
transform coefficients. Since compression works independently on
individual blocks of 8 � 8 pixels, higher compression ratios result
in a visually disturbing checkerboard pattern and artifacts along
strong edges (see Fig. 10) [53]. Although there is a newer
compression standard JPEG 2000, the original version still prevails
because of it simplicity and speed. For this reason, our algorithm
was designed specifically to work with image compressed by the
original standard.

For the removal of JPEG artifacts we proposed to use an
approximation of the Bayesian MAP approach, minimizing



Fig. 10. JPEG restoration: top: the image compressed by JPEG with quality factor 20;

bottom: the output of our reconstruction.

Fig. 12. An example of the PIZZARO user interface window.

J. Kamenicky et al. / Forensic Science International 264 (2016) 153–166 163
simultaneously the l1-norm of wavelet coefficients and discrepan-
cy from the quantization constraint QCu 2 hQCg � 0.5, QCg + 0.5i

arg min
u

1

2
jjQCg�QCujj2 þ akWuk1; (22)

where C is the orthogonal matrix of block discrete cosine transform
and Q the diagonal matrix containing inverted elements of the
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Fig. 11. Statistical comparison of our algorithm and [55] on a database of 60 images.

All images were compressed into JPEG format and then decompressed/restored by

both algorithms. This was done for nine JPEG quality levels, from 10 to 90. For each

quality, our results is shown on the left (blue) and [55] on the right (red). The graph

shows the median value, first and third quartiles, whiskers extending to the most

extreme data points not considered outliers, and outliers plotted individually. The

notches indicate the confidence intervals of the median.
quantization table defined by the JPEG standard [52]. For
regularization, we used the same wavelet transform W as for
image denoising [44], giving results superior to standard wavelets
or total variation [54,55]. Fig. 11 shows a statistical comparison of
the proposed novel method in terms of SNR with one of recent
methods [55] based on total variation.

6. PIZZARO software

All proposed algorithms have been included to PIZZARO [1], the
set of software tools for interactive image and video forensic
analysis and an application of individual procedures (see Fig. 12 for
the user interface). Software PIZZARO was developed in Cþþ using
Qt toolkit for graphical user interface, OpenCV for image
manipulation and several libraries for reading specific image/
video formats (libpng, libjpeg, libexif, FFmpeg), and can be run
under any version of Windows1 from XP up to 8.1 in either 32-bit
or 64-bit mode. As no platform specific libraries are used, it is
possible to compile the software for other platforms (e.g., OS X, or
specific Linux distributions).

It is designed to allow efficient work with images and videos to
quickly reveal and apply desired methods, with the possibility to
Fig. 13. Gas station super-resolution use case: top: an input video sequence

recorded by a security camera with close-ups of suspect’s left and right hand;

bottom: an estimated high-resolution image with two close-ups. Recovered image

suggests that the suspect wore a ring and hold the handgun in an unconventional

way using the middle finger on a trigger.



Fig. 14. X-ray scans image content verification use case: left column: dental X-rays

from both parties to the lawsuit; right column: the output of the noise

inconsistency detection evaluated on the X-rays, the bottom image manifests

suspicious structures.

Fig. 15. Billboard image content verification use case: (a) the original photo; (b) the

image with a modified area; (c) the output of the double-compression detection; (d)

the output of the chromatic aberration inconsistency detection.
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open many images or videos at the same time, compare results
achieved using different parameters, view Exif metadata informa-
tion for JPG images, etc.

The results can be immediately exported to HTML by the
integrated reporting system for printing. This functionality enables
to log and document how were the results achieved together with
applied parameters, operator identity, file paths and dates and
other possible settings. All this assures the repeatability of the
applied procedures.

7. Use cases

The proposed software system has been successfully applied on
several real cases of police investigation in cooperation with
different police departments in the Czech Republic.

An example of the utilization of the image and video restoration
module is the Gas station case. In Fig. 13 there is an output of the
video restoration that assisted in a police investigation conducted
by the Czech Police Department in Liberec, Division of Public
Criminality, which resulted in convicting a suspect of burglary and
homicide. Cropped frames from a video sequence recorded by a
security camera are on left. The close-ups (top and bottom) of the
left and right hand of the suspect show insufficient resolution of
the video sequence, where details are missing. They were
significantly restored after processing the video with proposed
PIZZARO video restoration module (right), which increased the
resolution and diminished the omnipresent noise. The most
notable is the presence of a golden ring on suspect’s left hand
and an unconventional way of holding a handgun with a
protruding index finger, which suggested that the suspect used
his middle finger on a trigger.

Another example of the application of the proposed procedures
is related to the demonstration that the photograph was tampered
in order to create false evidence. The analyzed image data were
two dental X-ray scans capturing the same patient (Fig. 14, left
column). They were supposed to be used to validate applied
medical procedure and they were used by opposite parties to the



J. Kamenicky et al. / Forensic Science International 264 (2016) 153–166 165
dispute. PIZZARO methods were here applied to investigate the
originality of the data. We evaluated the noise consistency results
of which are demonstrated in Fig. 14 in the right column. While the
noise structure of the upper X-ray scan does not relate to the image
content, the bottom X-ray noise is clearly related to the image
content, which is very unlikely. The conclusion that the bottom X-
ray is fraud was then even more significantly confirmed by the fact,
that these two scans are geometrically identical apart from the
areas where the noise inconsistencies were manifested (the
procedure of the X-ray data acquisition makes it almost absolutely
impossible to obtain two spatially identical scans).

Billboard, the last example of the PIZZARO application, comes
from the area of investigation of tax evasion. Here, the question to
be answered is whether the photographs of billboards justifying
the tax payer costs on his marketing campaign are genuine,
capturing real billboards (see Fig. 15(a)) and are not just results of
Photoshop work when the fake billboard image content was copied
into the real scenery (Fig. 15(b)). The latter case represents tax
fraud, because the tax payer is claiming costs which were not spent
in reality. Fig. 15(c) demonstrates the output of the double
compression detection module, where the dark area marks parts of
the photograph with suspicious parameters settings. The same
area was identified by the procedure testing the consistency of
chromatic aberrations (see Fig. 15(d), the arrows have random
direction and size).

The experience with cases analyzed by PIZZARO software has
shown that it is difficult to provide some defined manual how to
proceed with various tasks. The variability of possible scenarios is
large. Moreover, the three modules of the proposed PIZZARO
toolbox are each oriented on different problems, so not too often
methods from more modules are used on the same dataset. There
are some limitations which should be taken into account not to
decrease the efficiency of the methods. Denoising or JPEG artifact
removal should not be applied before any of the other method,
otherwise mathematical assumptions of the algorithms will be
violated. Denoising can be achieved by superresolution (SR) too, so
the denoising of the output of SR does not make sense. Even more
difficult situation arises when the forensic case under investigation
is to question the statement that the photograph was tampered.
Methods verifying the authenticity of image content often provide
only an indication that some parts of the photographs were
tampered because they manifest suspicious characteristics. The
recommended practice is to apply several methods for content
verification in order to get stronger evidence.

8. Conclusion

We have introduced a set of methods for image and video
forensic analysis. This work was based on tight cooperation of
scientists from the Institute of Criminalistics, National Drug
Headquarters of the Criminal Police and Investigation Service of
the Police of the Czech Republic, and image processing experts
from the Czech Academy of Sciences and thus reflecting best
practices used in the criminal investigation utilizing images and/or
videos. We have addressed two key problems identified as the
most important issues of which automation can facilitate
criminalists work. They are verification of image/video data with
respect to their credibility and origin and image restoration aimed
at diminishing unwanted artifacts and at the same time increasing
the data quality using all available information.

The described methods include the novel approaches for: an
assignment of the images to the source device, the image content
verification methods based on various image characteristics, and
finally, methodology for removing compression artifacts and even
increasing the data resolution. The functionality of some methods
was illustrated by means of the comparison to other existing
approaches and by demonstrating performance tests. Next to this,
the detection of LCD image re-capture and noise removal were
implemented in order to provide required functionality. Proposed
methods were designed or modified in order to fulfill time, quality,
and interactivity criteria. It should be noted that the output of the
proposed methods has often an indicative nature thus the
recommended practice is to apply several methods to get stronger
evidence.

All theoretical results were implemented in the PIZZARO
software tool (available for testing and licensing), which consists of
the image processing functionality and reporting and archiving
functions to ensure the repeatability of image analysis procedures,
fulfilling formal aspects of the analysis work.
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