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ABSTRACT

Deep learning-based methods for classification and segmen-
tation require large training sets. Generating training data
is often a tedious and expensive task. In industrial applica-
tions, such as automated visual inspection of products in an
assemble line, objects for classification are well defined yet
labeled data are difficult to obtain. To alleviate the problem
of manual labeling, we propose to train a convolutional neural
network with an automatically generated training set using a
naive classifier with handcrafted features. We show that when
the naive classifier has high precision then the trained network
has both high precision and recall despite the low recall of the
naive classifier. We demonstrate the proposed methodology
on real scenario of detecting a car coolant tank. However, the
proposed methodology facilitates collection of train data for
a wider type of CNN based methods such as near-duplicate
image detection or segmenting tampered areas of images.

Index Terms— CNN, SURF, U-net, automated object la-
beling, image segmentation

1. INTRODUCTION

Deep learning techniques have gained enormous popularity
in recent years for their superior performance and versatil-
ity. Convolutional neural networks (CNNs) are the most
frequently used tool for implementing the deep learning
paradigm and their applications range from machine learn-
ing, through computer vision, to image/video processing.
Machine learning tasks such as classification or segmen-
tation, which can be regarded as a particular problem of
classification, are typically solved via supervised learning,
i.e. a mathematical model is built from a set of training data
that contains both the inputs and the desired labels. Here, a
common drawback of CNNs is the need for a large amount
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of annotated data. Generating such training sets involves
a tedious data labeling process often carried out by human
experts. Labeling can therefore be an expensive job.

Industrial applications are specific in the sense that the
task in question is well defined, e.g. segmenting a partic-
ular object that does not change its appearance and shape
(Fig. 1), however, it can become dynamic, e.g. objects to
be segmented change because the production must react to
the evolving market needs. Generating new labeled data, pos-
sibly manually, to train CNNs every time the object to be seg-
mented is modified is impractical. One can return to tradi-
tional handcrafted features, such as SIFT [1], SURF [2], etc.,
that require less training data. Here, one object example (tem-
plate) is often sufficient, especially if the object’s appearance
is constant. These traditional approaches exhibit a subpar per-
formance and they can be even slower in inference (depending
on the size of chosen CNNs). Both drawbacks make tradi-
tional approaches unsuitable in industrial applications, where
real-time performance and high recall and precision are re-
quired.

In this work, we tackle the problem of missing training
data for a segmentation CNN. The proposed methodology is
based on the notion that CNNs generalize extremely well for
objects that change their appearance only slightly. We claim
that is it sufficient to generate labeled data automatically us-
ing a traditional classifier with handcrafted features. The key
idea is that the classifier is designed to be conservative, with
high precision and low recall, i.e. the segmented object can be
often completely missed in the input data, yet the training set
will contain a low number of false positives. Tuning the hand-
crafted features for new objects is assumed to be a relatively
easy task and thus generating new labeled data is cheap. The
labeled data are then used for training the segmentation CNN
and the property of CNNs to generalize well helps the newly
trained CNN to have both precision and recall high compared
to the traditional classifier generating the training set.

It is important to note that the proposed methodology
is applicable on collecting of train data for various types of
CNNs. For instance, CNN-based methods performing near-
duplicate image classification and search, typically, requires

�������	
	���
	����	�����
�
�������������� ���������

Authorized licensed use limited to: UTIA. Downloaded on November 02,2020 at 10:46:18 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Examples of inspected cars on the conveyor belt

a large number of image pairs representing original and the
near-duplicated version. Analogically, collecting pixel-level
labeled tampered images for training CNNs designed for ma-
nipulation detection is a challenging and expensive task. In
both mentioned problems, the proposed method can help in
increasing the train set size as well as precision/recall of the
classifiers.

2. RELATED WORK

Since the algorithm based on CNNs won ImageNet Classi-
fication challenge in 2012 [3], similar approaches have not
only become very popular, but they have improved to the
point where they can outperform a layman in image classifica-
tion tasks. Segmentation as a part of classification techniques,
has many applications in different research areas such as au-
topilot in self-driving cars (localizing other vehicles, traffic
signs, pedestrians, etc. ) [4] [5], medical imaging (localiz-
ing tumors and other pathologies, nuclei segmentation in the
microscopy images, detection of the lips and tongue move-
ments, etc.) [6] [7] [8], or interpreting satellite images and
understanding real-world urban scenes [9] [10].

2.1. Segmentation

Segmentation tasks can be divided into three groups – ob-
ject localization where the goal is to find bounding box co-
ordinates for given objects in the image, semantic segmen-
tation where each pixel has to be assigned to an appropri-
ate class (sometimes called pixel-level classification), and in-
stance segmentation where each pixel is assigned not only to
a class but also to an individual object [11] [12]. Although our
localization solution creates a label box around the object, the
used U-net CNN method belongs to semantic segmentation
group [13], [14], [15]. Most of these techniques rely on deep
networks, where the amount of training data is crucial.

Data labeling is a highly non-trivial and often iterative
process as shown for example in self-driving car neural net-
works training [4]. Thus the main problem in such segmenta-
tion approach is to get trusted and well-labeled data set. The
manual annotation is the most common way how to perform
data labeling. There are many platforms and software tools
to create effectively bounding boxes, such as LabelImg, Rect-
Label, LabelMe, or VIA (VGG Image Annotator). Another
possibility is reinforcement learning that enables to train ma-
chine learning models by the trial-and-error. Unfortunately
reinforcement learning or any public labeled data repository
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Fig. 2: Our framework for automated object labeling for im-
age segmentation.

(a) template image (b) SURF detection (b) mask for CNN

Fig. 3: Object detection with SURF method.

is not applicable in our problem, where we need to localize
very special car components.

2.2. Features for object recognition

There are various approaches to object description used in
feature-based image recognition [16]. Their popularity has
declined slightly due to CNNs, which tend to be faster and
work with higher precision and variability of use. On the
other hand, their irreplaceable significance will prove in the
case of object detection from one single image template. In
addition, it ought to be mentioned that each of the presented
methods can be beneficial in different applications.

The most commonly used methods include: SIFT [1];
MSER [17]; FAST [18]; SURF [2]; BRIEF [19]; and BRISK
[20]. In our detection of engine parts we achieved the best
results with the SURF method, especially thanks to its invari-
ance to scale and rotation.

3. OUR FRAMEWORK

Our framework consists of five phases, as depicted in Fig.
2. The process starts with the data acquisition, a crucial part
which can influence the outcome of the whole segmentation.
In the second step an appropriate type of features is selected
(here the SURF [2] were used), evaluated, and objects are au-
tomatically labeled using these features. Clean data phase is
applied only when needed, i.e. there are object occlusions or
other types of unwanted artifacts. In these cases, such images
are omitted from further processing. The latter two steps fol-
low a common CNN segmentation solution, where CNN is
trained using data from the second phase and then used for
the segmentation.
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3.1. U-net architecture design

U-net, presented in 2015 by O. Ronneberger et al. [21] was
designed to perform fast and precise segmentation. It is based
on the fully convolutional network [22], but apart from the
contracting path to capture contexts it has also a symmet-
ric expanding path for precise localization. Unlike the Ron-
neberger’s group, we do not use cropping in the contracting
step and every 3x3 convolution produces the same size as their
inputs (padding=same). Therefore we get the mask at the out-
put equally large as an input image, which is 512x512 pixels.
Our modified U-net architecture is illustrated in Figure 5. The
activation function ReLU, the 2x2 max pooling operation, and
the total of 27 convolution layers are preserved according to
the original design. Our U-net network was built in Keras, the
high-level API in TensorFlow, and it was trained on NVIDIA
Quadro P6000 graphics card. Obtaining data for training and
validation are described in Chapter 4.2.

4. REAL EXPERIMENT

The data were collected under the project for Škoda-auto
aimed at the automatic inspection of vehicle production. The
requested goal of the project was to monitor the level of
coolant in the tank of a car engine. On the control block
KB8, the cars are parked manually on the conveyor strand
by employees, the bonnet is lifted and the whole car is thor-
oughly visually inspected for defects such as misaligned
interior padding, not functioning indicators on a dashboard,
discharged battery or other problems that might have occurred
during assembly and have been missed during previous in-
spections. One of such problems is the mentioned lack of
coolant, which frequently occurs in cars that stayed in the
factory longer than expected, e.g. due to a replacement of
faulty parts.

4.1. Data acquisition

We had to locate the spot for camera montage as close as pos-
sible to the inspected car while not obstructing any activities
of employees. We found such a place on the left side panel
at approximately eye height and pointed the camera slightly
forwards so the inside of the engine space could be visible
for about 20 seconds. We used an ordinary webcam Log-
itech BRIO 4K Stream Edition. A continuously running script
for data acquisition worked for several weeks with 1 fps in
FullHD resolution and saved data in 10-minute intervals. All
frames were recorded in motion JPEG (M-JPEG) and after
that encoded in HEVC h265.

We avoided recording duplicate frames, when the con-
veyor was stopped for a break or a shift change, by automat-
ically stopping recording in the script at regularly scheduled
breaks. There were a few instances when the line was un-
expectedly stopped and one car remained under our cameras
for half an hour, while people were also passing in front of

Fig. 4: Examples of occlusion of the coolant in the wild train-
ing data. The mask for CNN is marked with the red rectangle,
see Section 4.2.

it. We had to account for these unusual cases and build our
processing system sufficiently robust.

4.2. Automated data labeling and cleaning process

Using SURF features for detecting only the coolant tank
yielded poor results as the cropped area is very small with
low resolution. The other algorithms mentioned in Section
2.2 work even less satisfactory in such small areas. There-
fore, we extended the template to the size shown in Fig. 3.
This extended region of interest is used for counting refer-
ence points and Fig. 3b demonstrates the output of SURF
in one frame of analyzed videos. If the matching algorithm
detects the template in an image, we check the size and shape
of the marked area. In the next step, we exploit the fact
that the coolant has a strongly distinguishable purple color.
Using the HSV space, we are able to threshold the hue and
separate purple areas from the rest of the image. Lastly, we
use morphological operation to join areas together. After the
coolant localization, we count the center of gravity and the
final labeled segment that enters the training process of the
CNN is a cropped area around the liquid centroid: 10 pixels
below, 50 pixels above and 40 pixels on each side; see the red
rectangle in Fig. 3c.

This way we generated a complete set of 26,000 images,
from which we manually removed faulty cases and obtained
a clean set of 20,500 images. Most of the faulty data were
caused by occlusion and accounted for 14.58% of the total
number of automatically generated images, examples are
given in Fig. 4. Than we divided randomly the clean set to
18,000 images for testing (DTest), 2,000 images for training
(DTrain), and 500 images for validation (DVal). Moreover
we randomly chose from the complete set of 26,000 images
another set of 2,000 for training (DTrainW) and 500 for vali-
dation (DValW). We refer to this training set that contains also
faulty cases as the wild data. To validate both algorithm in-
dependently, we selected and labeled manually 1,000 images
as ground-truth data.

4.3. Results

The experiment consists of three parts. First, we randomly
mixed and divided the data in DTrain into 20 subsets each
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Fig. 5: U-net architecture inspired by Ronneberger et al. [21].
In our case, the U-net is symmetric ant the output image is the
same size like input image, namely 512x512 pixels.

Fig. 6: A comparison of SURF (green) and CNN (red) seg-
mentation in DTest with training on DTrain (first two images)
and DTrainW (second two).

with 100 images. Similarly, we randomly divided the valida-
tion data DVal into subsets of 25 images. This way we simu-
late a situation when we do not have enough labeled data from
the feature-base algorithm. Than we train the U-net with the
subsets and got 20 models for segmentation. For evaluation,
we used the whole DTest set in all the cases. The obtained pre-
cision and recall [23] summarized in Table 1 shows that the
excellent performance is quickly reached and for the training
sets of size 800 and more there is practically no improvement.

Second, the same process we repeated with DTrainW,
where faulty data were included, and the precision and recall
were counted on the same data as before, i.e. DTest. The
output accuracy is again summarized Table 1. The results are
almost the same meaning that the CNN is stable even if we
train with the wild data in DTrainW and DValW. In all the
cases, we set the maximum number of training epochs to 200
and employed an early-stopping criterion when the value of
the loss function stopped changing.

In the third part, we compare both algorithms on the
ground-truth data, see Table 2.

Table 1: Results of our framework for CNN segmentation.
N = size of the training set; n = number in the validation
set; P,R = precision and recall of the clean data; Pw, Rw =
precision and recall of the wild data.

N n P Pw R Rw

400 100 96.38 96.82 80.55 94.36
800 200 98.42 97.99 99.13 99.51
1200 300 98.26 98.18 99.42 99.29
1600 400 98.85 98.01 98.67 98.63
2000 500 98.69 97.22 99.27 99.53

(a) Input (b) Result

(c) Input (d) Result

Fig. 7: False positives from CNN segmentation

Table 2: A comparison of feature-base methods and our
framework on 1000 manually labeled images - ground-truth.

BRISK FAST MSER SURF CNN
Precision [%] 100.00 100.00 62.4 100.00 100.00
Recall [%] 0.80 0.70 1.50 1.20 99.50

5. CONCLUSION

In the proposed paper we described an approach which helps
to overcome the lack of annotated data in the CNN-based seg-
mentation. The combination of the low recall & high preci-
sion feature-based labeling and adapted U-net CNN formed
a segmentation algorithm with high precision and high recall
(see Section 4). The robustness of the labelling method was
further improved by using the larger size of ROIs for feature
evaluation and object detection, followed by object threshold-
ing in the HSV color space to extract the best possible object
representation for CNN training.

The achieved precision & recall values (see Tables 1-2)
demonstrate that the U-net was a good choice for a segmenta-
tion task when objects to be detected change their appearance
just slightly. In similar industry applications only small rota-
tions and/or negligible affine degradations can be assumed.
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